EXERCICE 1 (3 points)

Pour chacune des questions suivantes une seule des trois réponses proposées est exacte.
Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie.
Aucune justification n'est demandée.

L'espace est rapporté à un repère orthonormé direct (O, i, j, k).
On considère les points $A(1,0,0)$, $B(0,1,0)$ et $C(0,0,2)$.

1) Le vecteur $\overrightarrow{OB} \wedge \overrightarrow{OC}$ est égal à
 $a/ \overrightarrow{OA} \overrightarrow{2OA}$, $b/ -2 \overrightarrow{OA}$, $c/ -2 \overrightarrow{OA}$.

2) Le réel $\frac{1}{6} (\overrightarrow{AB} \wedge \overrightarrow{AO}).\overrightarrow{AC}$ est égal à
 $a/ 0$, $b/ \frac{1}{3}$, $c/ 2$.

3) La droite (BC) est l'intersection des plans d'équations
 $a/ x = 1$ et $2y + z - 2 = 0$.
 $b/ x = 0$ et $y + 2z - 1 = 0$.
 $c/ x = 0$ et $2y + z - 2 = 0$.

4) Une équation de la sphère de centre O et tangente au plan (ABC) est
 $a/ x^2 + y^2 + z^2 = 1$.
 $b/ x^2 + y^2 + z^2 = \frac{4}{9}$.
 $c/ x^2 + y^2 + z^2 - 2x = \frac{4}{9}$.

EXERCICE 2 (4 points)

Le plan est muni d'un repère orthonormé direct (O, u, v).
On désigne par (C) le cercle de centre O et de rayon 1 et par I et A les points d'affixes respectives 1 et $a = \sqrt{3} + i$.

1) $a/ Donner la forme exponentielle de a.
 $b/ Construire le point A.

2) Soit B le point d'affixe $b = \frac{a - 1}{1 - a}$.
 $a/ Vérifier que $b\overline{b} = 1$. En déduire que le point B appartient au cercle (C).
 $b/ Montrer que $\frac{b - 1}{a - 1}$ est un réel. En déduire que les points A, B et I sont alignés.
 $c/ Construire le point B dans le repère (O, u, v).
3) Soit θ un argument du nombre complexe b.

Montrer que $\cos \theta = \frac{2\sqrt{3} - 3}{5 - 2\sqrt{3}}$ et $\sin \theta = \frac{2 - 2\sqrt{3}}{5 - 2\sqrt{3}}$.

EXERCICE 3 (4 points)

Le centre National de la Transfusion sanguine a diffusé le tableau ci-contre donnant la répartition des groupes sanguins en Tunisie.

I) 1) Quelle est la probabilité qu’un tunisien ait un sang du groupe O ?

2) Quatre donneurs se présentent dans un centre de transfusion sanguine.
 a/ Quelle est la probabilité qu’un seul parmi les quatre ait un sang du groupe O ?
 b/ Quelle est la probabilité de trouver les quatre groupes sanguins chez ces donneurs ?

II) Indépendamment du groupe sanguin, le sang peut posséder le facteur Rhesus. Si le sang d’un individu possède ce facteur, il est dit de Rhesus positif (Rh+), sinon il est dit de Rhesus négatif (Rh-).

Un individu ayant un sang de groupe O et de Rhesus négatif est appelé un donneur universel.

En Tunisie, 9% des individus du groupe O sont de Rhesus négatif.

1) Montrer que la probabilité qu’un tunisien soit un donneur universel est 0.0414.

2) Dans un centre de transfusion sanguine, n donneurs se présentent.

 On note X la variable aléatoire égale au nombre de donneurs universels parmi les n donneurs.
 a/ Déterminer la loi de probabilité de X.
 b/ Déterminer l'espérance de X en fonction de n.
 c/ Déterminer le nombre moyen des donneurs universels parmi 5000 donneurs.

EXERCICE 4 (3 points)

A l’instant $t = 0$ (t exprimé en heures) un médecin injecte à un patient une dose de 1.4mg d’une substance médicamenteuse qui n’est pas présente dans le sang. Cette substance se répartit instantanément dans le sang, ensuite elle est progressivement éliminée.

On note $Q(t)$ la quantité de substance (en mg) présente dans le sang à l’instant t, ($t \geq 0$).

On admet que la fonction $Q : t \mapsto Q(t)$ vérifie l’équation différentielle (E) : $y' + (0.115)y = 0$.

1) Résoudre l’équation (E).

2) a/ Justifier que $Q(t) = 1.4e^{-0.115t}$, $t \geq 0$.
 b/ Donner le sens de variation de la fonction Q.
 c/ Résoudre dans $[0, +\infty[$ l’équation $Q(t) = 0.7$; la solution sera arrondie à l’unité.
3) Pour une efficacité optimale de ce médicament, sa quantité présente dans le sang doit être comprise entre 0.7mg et 1.4mg.
Expliquer pourquoi le médecin prescrit à ce patient une injection de 0.7mg chaque six heures.

EXERCICE 5 (6 points)

Dans l'annexe ci-jointe (O, i, j) est un repère orthonormé du plan.

\(C_f \) est la représentation graphique de la fonction \(f \) définie sur \(\mathbb{R}_+ \) par
\[
f(x) = -\frac{x^2 + x \ln x + x}{(x + 1)^2}
\]
pour \(x > 0 \) et \(f(0) = 0 \).

Le réel \(\alpha \) est l'abscisse du point d'intersection de la courbe \(C_f \) avec l'axe des abscisses autre que le point \(O \).

1) a/ Par lecture graphique, donner le signe de \(f(x) \).
b/ Montrer que \(\ln \alpha = -\left(\alpha + 1\right) \).

2) On considère la fonction \(g \) définie sur \([\alpha, +\infty[\) par
\[
g(x) = \frac{x \ln x}{x + 1} + 1
\]
et on désigne par \(C_g \) la courbe représentative de \(g \) dans le repère \((O, i, j)\).
Montrer que \(\lim_{x \to +\infty} g(x) = +\infty \) et que \(\lim_{x \to +\alpha} \frac{g(x)}{x} = 0 \).

3) a/ Montrer que pour tout réel \(x \) appartenant à l'intervalle \([\alpha, +\infty[\),
\[
g'(x) = -\frac{f(x)}{x}.
b/ Dresser le tableau de variation de \(g \).

4) a/ Montrer que \(g(\alpha) = 1 - \alpha \).
b/ Construire alors, sur l'annexe, le point de la courbe \(C_g \) d'abscisse \(\alpha \).
c/ Tracer la courbe \(C_g \).

5) On désigne par \(\mathcal{A} \) l'aire (en unité d'aire) de la partie du plan limitée par les courbes
\(C_g \), \(C_f \) et les droites d'équations \(x = \alpha \) et \(x = 1 \).
a) Montrer, en utilisant une intégration par parties, que
\[
\int_{\alpha}^{1} f(x) dx = -\left[x g(x) \right]_{\alpha}^{1} + \int_{\alpha}^{1} g(x) dx.
b/ En déduire que \(\mathcal{A} = \alpha^2 - \alpha + 1 \).
Annexe à rendre avec la copie