RÉPUBLIQUE TUNISIENNE

MINISTÈRE DE L'ÉDUCATION

EXAMEN DU BACCALAURÉAT SESSION 2022

Épreuve : Sciences

Session principale

de la vie et de la terre

Section: Sciences expérimentales

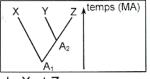
Durée : 3h Coefficient de l'épreuve : 4

N° d'inscription					
	 (D. C.	≥ @	2 ®	7

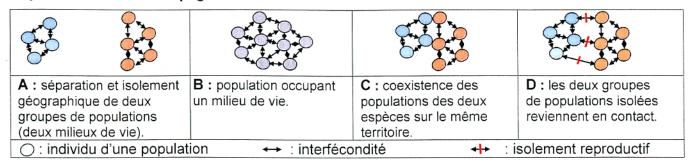
I- QCM (4 points)

Pour chacun des items suivants (de 1 à 8), il peut y avoir une (ou deux) réponse(s) correcte(s). Reportez sur votre copie le numéro de chaque item et indiquez dans chaque cas la (ou les deux) lettre(s) correspondant à la (ou aux deux) réponse(s) correcte(s).

NB: toute réponse fausse annule la note attribuée à l'item.


- L'augmentation du taux de FSH à la fin du cycle sexuel normal entraine :
 - a- les menstruations.
 - b- la dégénérescence du corps jaune.
 - c- la croissance de nouveaux follicules cavitaires.
 - **d-** l'inhibition du complexe hypothalamo-hypophysaire.

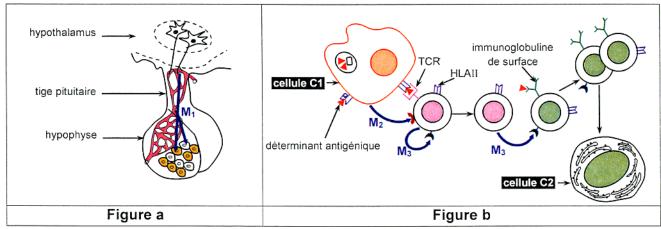
2) Les œstrogènes et la progestérone sont des hormones :


- a- sécrétées à un taux élevé, chez une femme ménopausée.
- b- sécrétées par le corps jaune et le placenta chez une femme enceinte.
- c- sécrétées sous l'effet de l'hormone gonadotrophique chorionique (HCG), chez une femme au 5^{ème} mois de grossesse.
- d- qui inhibent l'axe hypothalamo-hypophysaire chez une femme enceinte.
- 3) Dans une famille présentant une maladie contrôlée par un allèle autosomal récessif, le mariage consanguin:
 - a- est déconseillé entre les cousins germains.
 - b- augmente le risque d'avoir des enfants malades.
 - c- augmente le risque d'avoir des enfants trisomiques.
 - d- diminue la probabilité de rencontre des allèles responsables de la maladie.

4) En cas d'hémorragie, l'organisme réagit par :

- a- l'inhibition du centre vasomoteur.
- **b-** l'activation du noyau moteur du nerf X.
- c- l'augmentation de la fréquence de potentiels d'action au niveau des fibres afférentes.
- d- l'augmentation de la fréquence de potentiels d'action au niveau des fibres sympathiques.
- 5) Les hématies d'un individu de groupe sanguin [A] sont agglutinées par le sérum d'un individu de groupe sanguin:
 - a-[0]
 - **b** [A]
 - **c** [B]
 - **d-** [AB]
- 6) L'arbre phylogénétique de trois espèces X, Y et Z ci-contre, montre que :
 - a- A₂ est l'ancêtre commun des deux espèces X et Y.
 - **b-** A₁ est l'ancêtre commun des trois espèces X, Y et Z.
 - c- les espèces X et Z sont plus apparentées que les espèces Y et Z.
 - d- l'ancêtre commun des espèces Y et Z est plus proche dans le temps que celui de X et Z.
- 7) L'espèce de blé à 2n=42 chromosomes provient d'une espèce ancestrale à 2n=14 chromosomes
 - a- polyploïdie.
 - b- mutations géniques.
 - c- amplifications géniques.
 - d- fusion des chromosomes.

8) Le document suivant présente, dans le désordre, quelques étapes de l'évolution des pinsons des îles Galápagos.



L'ordre correct des étapes de l'évolution des pinsons est :

- a- A, C, B, D.
- **b-** B, A, D, C.
- c- D, B, C, A.
- d- C, A, B, D.

II- Interactions cellulaires : cas de la reproduction masculine et de l'immunité de l'organisme (4points)

Le fonctionnement testiculaire et le déroulement de la réponse immunitaire à médiation humorale font intervenir des interactions cellulaires qui sont illustrées par les figures (a) et (b) du document 1. M_1 , M_2 et M_3 sont des messagers chimiques.

Document 1

1) Reproduisez, sur votre copie, le tableau suivant et complétez-le.

Messagers chimiques	M ₁	M ₂	M ₃
Noms			
Cellules sécrétrices			
Cellules cibles			
Effets sur les cellules cibles			

- 2) Expliquez les conséquences de l'interaction illustrée par la figure (a) sur la spermatogenèse.
- 3) Précisez comment les cellules C1 et C2 interviennent dans la phase effectrice de la réponse immunitaire à médiation humorale.

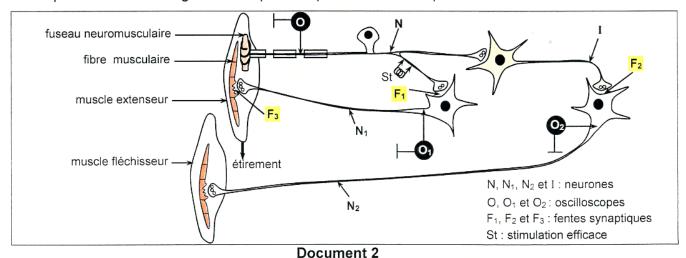
©DEUXIEME PARTIE (12 points)

I- Génétique des diploïdes (5 points)

On se propose d'étudier le mode de transmission de deux couples d'allèles (A₁, A₂) et (B₁, B₂) contrôlant chacun un caractère héréditaire chez la drosophile. Pour cela on réalise les croisements suivants :

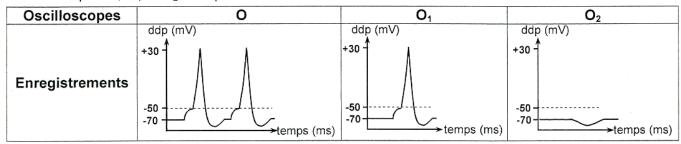
Premier croisement: On croise des drosophiles de phénotype $[A_1B_1]$ avec des drosophiles de phénotype $[A_2B_2]$. On obtient une première génération F1 composée d'individus tous de phénotype $[A_1B_1]$.

Deuxième croisement : On croise un mâle de phénotype $[A_1B_2]$ avec une femelle de phénotype $[A_2B_1]$. On obtient une descendance composée de :


- 124 drosophiles de phénotype [A₁B₁]
- 126 drosophiles de phénotype [A₁B₂]
- 125 drosophiles de phénotype [A₂B₁]
- 127 drosophiles de phénotype [A₂B₂].
- 1) Analysez les résultats obtenus en vue de :
 - a- préciser la relation de dominance entre les allèles de chaque couple.
 - b- proposer des hypothèses concernant la localisation des deux couples d'allèles.

Troisième croisement : On croise une femelle de phénotype $[A_1B_1]$ de la F1 avec un mâle de phénotype $[A_2B_2]$. On obtient une descendance dont 6 % des individus sont de phénotype $[A_1B_2]$.

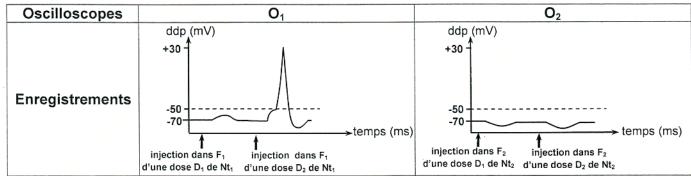
- 2) Déterminez à partir de ce résultat :
 - la localisation des deux couples d'allèles.
 - les génotypes des parents du deuxième et du troisième croisement.
- 3) Représentez le comportement des chromosomes aboutissant à la formation des gamètes chez la femelle du troisième croisement.


II- Neurophysiologie (7 points)

On se propose d'étudier certains aspects du mécanisme du réflexe myotatique à partir des résultats des expériences réalisées grâce au dispositif expérimental illustré par le document 2.

Expérience 1:

On soumet le muscle extenseur à un étirement efficace. Les enregistrements obtenus au niveau des oscilloscopes O_1 O_2 sont présentés dans le document 3.


Document 3

- 1) Exploitez les résultats de l'expérience 1 et utilisez vos connaissances en vue :
 - de déduire la nature de chacune des synapses (N-N₁), (N-I), et (I-N₂).
 - d'expliquer l'obtention de l'enregistrement au niveau de l'oscilloscope O.
 - de dégager le rôle du fuseau neuromusculaire.

Expérience 2 :

On injecte, deux doses D_1 et D_2 ($D_2 > D_1$), d'un neurotransmetteur Nt_1 dans la fente synaptiques F_1 et d'un neurotransmetteur Nt_2 dans la fente synaptiques F_2 . Ensuite, on enregistre les phénomènes électriques au niveau des oscilloscopes O_1 et O_2 .

Les enregistrements obtenus sont présentés dans le document 4.

Document 4

- 2) Comparez les résultats obtenus en vue de dégager :
 - a- la nature de chacun des neurotransmetteurs Nt₁ et Nt₂.
 - b- la relation entre la dose du neurotransmetteur injectée et l'amplitude de la réponse obtenue.

Expériences 3 et 4

On injecte dans la fente synaptique F_1 , à des doses suffisantes, deux substances chimiques radioactives A et B suivie ou non d'une stimulation efficace St. On suit la localisation de la radioactivité et on enregistre les phénomènes électriques au niveau de l'oscilloscope O_1 .

Les conditions expérimentales et les résultats obtenus sont regroupés dans le document 5.

	Expériences	Localisation de la radioactivité	Enregistrements obtenus au niveau de l'oscilloscope O ₁	
3	Injection de la substance A radioactive dans F ₁	Membrane postsynaptique	Potentiel d'action	
4	Injection de la substance B radioactive dans F ₁ suivie de la stimulation St.	Membrane postsynaptique	Potentiel de repos	

Document 5

3) À partir de l'exploitation des résultats des expériences 3 et 4 et des informations fournies par l'expérience 2, expliquez le mode d'action de chacune des substances A et B.

Expériences 5

On injecte de la choline radioactive dans la fente synaptique F₃. La radioactivité est retrouvée au niveau des vésicules synaptiques de N₁.

Après étirement efficace du muscle extenseur, on détecte la radioactivité au niveau de F_3 ; puis au niveau de la membrane postsynaptique et enfin dans la terminaison axonique de N_1 .

- 4) Expliquez les résultats de l'expérience 5.
- 5) À partir des informations tirées précédemment, et en faisant appel à vos connaissances, expliquez comment le fonctionnement des deux types de synapses : neuroneuronique et neuromusculaire aboutit à la contraction du muscle extenseur et au relâchement simultané du muscle fléchisseur à la suite de l'étirement efficace du muscle extenseur.