RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION EXAMEN DU BACCALAURÉAT SESSION 2020

- •		_
COCCION	principa	
36221011	Dillicipa	
		_

Épreuve : Technologie

Section: Sciences Techniques

Durée : 4h

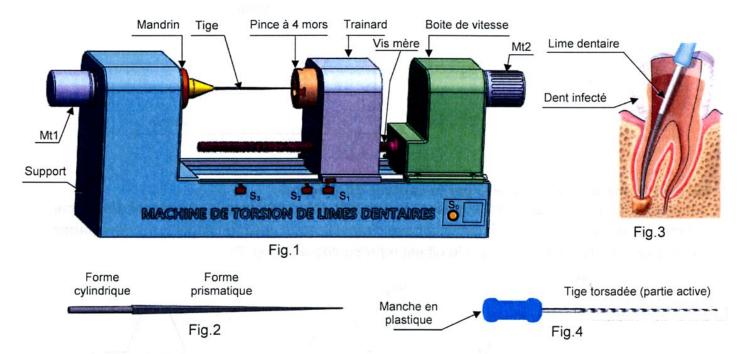
Coefficient de l'épreuve : 3

adadad

CONSTITUTION DU SUJET

- Un dossier technique: pages 1/7, 2/7, 3/7, 4/7, 5/7, 6/7 et 7/7
- Un dossier réponses: pages 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8 et 8/8.

TRAVAIL DEMANDE


- A. Partie génie mécanique : pages 1/8, 2/8, 3/8 et 4/8 (10 points).
- B. Partie génie électrique : pages 5/8, 6/8, 7/8 et 8/8 (10 points).

Observation: Aucune documentation n'est autorisée. L'utilisation de la calculatrice est permise.

MACHINE DE TORSION DE LIMES DENTAIRES

1. Présentation

La machine (Fig.1) est destinée à la torsion des tiges meulées (Fig.2) afin d'avoir des limes dentaires utilisées par les dentistes pour le traitement d'une dent infectée (Fig.3). La lime est composée d'une manche en plastique et d'une tige torsadée en acier inoxydable représentant sa partie active (Fig.4).

Le serrage de la tige meulée au niveau de sa forme cylindrique (Fig.2) est assuré par le mandrin. L'opération de torsadage est assurée par la rotation du mandrin entrainé par le moteur Mt1, le blocage de la tige au niveau de sa forme prismatique par la pince à 4 mors et l'avance et le recul du trainard. Le déplacement du trainard est assuré par un système vis-écrou et une boite de vitesses accouplée au moteur Mt2.

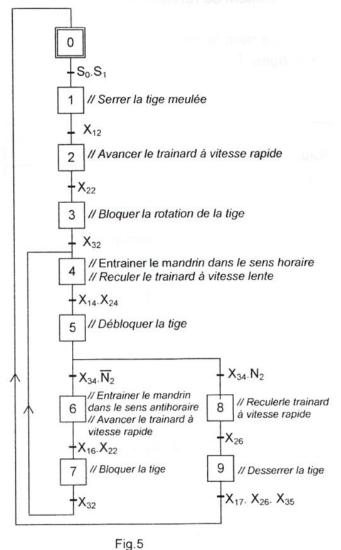
Dossier technique	MACHINE DE TORSION DE LIMES DENTAIRES	Page : 1/7	
-------------------	---------------------------------------	------------	--

2. Description de fonctionnement du mécanisme d'avance et de recul du trainard

L'avance et le recul du trainard sont assurés par un système vis-écrou et un guidage prismatique (Fig.1).

L'écrou est fixé sur le trainard et la vis est animée d'un mouvement de rotation à l'aide de la boite de vitesses (page 7/7 du dossier technique).

Le mouvement de rotation de l'arbre moteur (1) est transmis vers la vis mère (36) à travers un ensemble de roues dentées et l'un des deux embrayages E1 ou E2 selon la vitesse de déplacement du trainard.


3. Nomenclature

Rep.	Nbr.	Désignation
1	1	Arbre moteur
2	(10h	Vis de pression
3	7	Vis CHc
4	1	Support moteur
5	1	Flasque droite
6	1	Pignon Z = 30
7	- 1	Carter
8	2	Cloche
9	2	Bague collectrice
10	1	Pignon Z = 54
11	1	Clavette disque
12	2	Roulement BC
13	1	Bague entretoise
14	1	Anneau élastique
15	1	Rondelle spéciale
16	4	Disque intérieur
17	4	Disque extérieur
18	5	Vis CHc
19	1	Roue dentée Z = 113
20	1	Manchon cannelé
21	12	Vis CHc
22	4	Roulement BC
23	3	Bague entretoise

Rep.	Nbr.	Désignation
24	1	Arbre
25	4	Clavette parallèle
26	2	Anneau élastique
27	2	Bobine (KA2, KA3)
28	2	Roulement BC
29	2	Anneau élastique
30	1	Pignon arbré Z = 35
31	1.	Flasque gauche
32	1	Roulement à aiguilles
33	1	Roue dentée Z = 94
34	1	Vis CHc
35	1	Bouchon de remplissage
36	1	Vis mère
37	2	Roulement BC
38	1	Couvercle
39	1	Pignon arbré Z = 104
40	2	Plateau de pression
41	2	Support bobine
42	1	Roue dentée Z = 118
43	1	Bague à collerette
44	4	Vis CHc
45	1	Clavette parallèle

4. Fonctionnement de la machine

Le trainard étant en position initiale (S_1 actionné). La mise manuelle d'une tige meulée dans le mandrin et l'appui sur S_0 entraine le fonctionnement de la machine qui est décrit par le GRAFCET de conduite ci-dessous.

Tâche 1: Mandrin

L'étape 1 du grafcet de conduite enclenche successivement les actions suivantes :

- La tige meulée est serrée par les mors du mandrin (S₄=1) puis une étape d'attente est activée.
- L'étape 4 du grafcet de conduite permet d'entrainer en rotation le mandrin en sens horaire effectuant continuellement 12 tours (N₁=1). Puis, une étape d'attente est activée.
- Si $(X_6 = 1)$, alors le mandrin effectue 12 tours en sens antihoraire $(\overline{N_1} = 1)$. Puis, une étape d'attente est activée.
- L'étape 4 permet d'activer l'étape 13.
- Si $(X_9 = 1)$, la lime est desserrée jusqu'à ce que S_4 soit non actionné $(\overline{S_4} = 1)$ Puis, une étape d'attente est activée.
- Le grafcet de la tâche 1 est initialisé par l'étape 0 du grafcet de conduite.

Tâche 2: Trainard

L'étape 2 du grafcet de conduite enclenche successivement les actions suivantes :

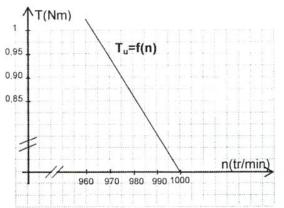
- Le trainard avance à une vitesse rapide jusqu'au capteur S₃. Puis, une étape d'attente est activée.
- L'étape 4 du grafcet de conduite permet de reculer le trainard à une vitesse lente jusqu'au capteur S₂. Puis une étape d'attente est activée.
- Si $(X_6 = 1)$, la séquence reprend : avance puis recul du trainard selon les vitesses déjà prescrites ;
- Si (X₈ = 1), le trainard recule rapidement jusqu'à S₁ puis une étape d'attente est activée.
- Le grafcet de la tâche 2 est initialisé par l'étape 0 du grafcet de conduite.

Tâche 3: Pince

L'étape 3 du grafcet de conduite enclenche successivement les actions suivantes :

- La pince bloque la tige meulée par la sortie de ses quatre mors jusqu'à l'action du capteur
 S₅. Puis, une étape d'attente est activée. La tige reste bloquée pendant cette étape.
- L'étape 5 du grafcet de conduite permet de débloquer la tige en ouvrant la pince jusqu'à ce que le capteur S_5 soit non actionné $(\overline{S_5}=1)$. Ensuite, une étape d'attente est activée.
- Si (X₇ = 1), la séquence reprend : blocage puis déblocage de la tige.
- Si (X₉ = 1), une étape d'attente est activée.
- Le grafcet de la tâche 3 est initialisé par l'étape 0 du grafcet de conduite.

5. Choix technologique


	ENTREES
Désignation	Fonction
S ₀	Départ cycle
S ₁	Trainard en position initiale
S ₂	Fin de la torsion
S ₃	Traînard en position finale
S ₄	Tige serrée
S ₅	Tige bloquée
S ₆	Détecteur de tours du mandrin
N ₁	12 tours du mandrin effectués
N ₂	3 opérations de torsion effectuées

N.B	: Au début	t de chaq	ue opé	ratio	n de
tors	ion, le cap	teur S ₆ =1	. Les	12	tours
du	mandrin	correspo	ondent	à	12
déte	ections con	sécutives	de ce	capt	teur.

SOR	TIES	Fonction
Actionneur	Pré-actionneur	Poliction
Moteur à courant	KM1	Entrainer le mandrin dans le sens horaire
continu Mt1	KM2	Entrainer le mandrin dans le sens antihoraire
Moteur à courant	KM3	Avancer le trainard
continu Mt2	KM4	Reculer le trainard
Electro-aimant	KA1	Serrer la tige meulée
Embrayage E1	KA2	Vitesse rapide du trainard
Embrayage E2	KA3	Vitesse lente du trainard
Moto-pompe hydraulique	KA4	Bloquer la tige meulée
C1	-	Compter le nombre de tours du mandrin
C2	-	Compter le nombre d'opérations de torsion

6. Etude du moteur Mt1

Le moteur Mt1 est à courant continu à excitation indépendante (U_{ex} = constante) dont les caractéristiques Tu = f(n) et I = f(n), présentées à la (fig. 6), sont représentées à une tension d'induit constante U = 36V.

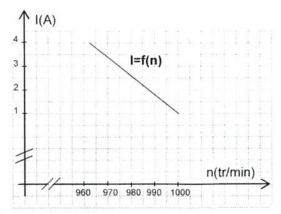
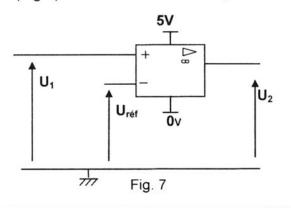
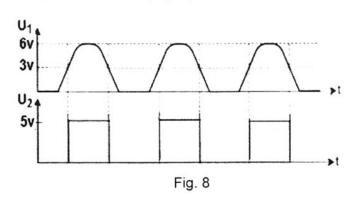
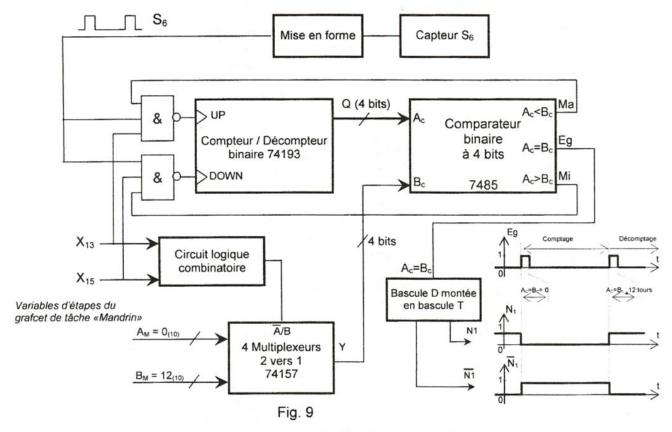




Fig. 6

7. Mise en forme du signal délivré par le capteur de position

Le capteur S₆ convertit la position angulaire du mandrin en une tension U₁. Le signal délivré par ce capteur est mis en forme par un circuit à base d'amplificateur linéaire intégré considéré parfait (Fig.7). La tension de sortie U₂ de ce circuit est représentée à la (Fig. 8).



8. Comptage du nombre de tours du mandrin

Le comptage du nombre de tours du mandrin est assuré par une carte électronique à base de circuit intégré 74193 (Fig.9). Le tableau suivant présente le mode de fonctionnement du compteur/décompteur, les états du multiplexeur, du comparateur et du moteur en fonction de l'état des variables X₁₃ et X₁₅ associées aux étapes 13 et 15 du grafcet de la tâche « Mandrin ».

Grafcet tâche "Mandrin"		C 1 7/103	C.I 74193 MUX 74157		Comparateur	Moteur Mt1	
X ₁₃	X ₁₅	0.174193	A/B	Υ	7485	Moteur Mit i	
1	0	Comptage	0	A _M	A _c <b<sub>c</b<sub>	Rotation horaire	
0	0	Blocage	1 1	B _M	$A_c = B_c$	Arrêt	
0	1	Décomptage	1	Вм	A _c > B _c	Rotation anti-horaire	
0	0	Blocage	1	Вм	$A_c = B_c$	Arrêt	

9. Compteur / Décompteur binaire synchrone 74193

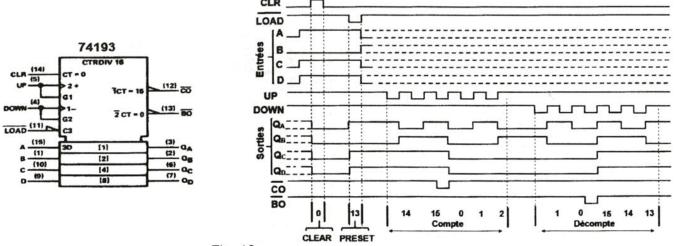
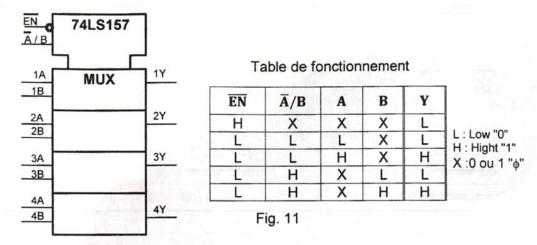
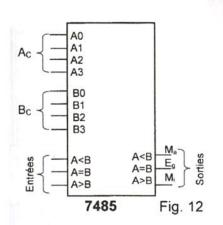




Fig. 10

10. Quadruple multiplexeurs (2 vers 1) 74157

11. Table de fonctionnement du circuit 7485

in es	Entrées des nombres					mise ide		Sortie	s
A3, B3	A2, B2	A1, B1	A0, B0	A>B	A <b< th=""><th>A=B</th><th>A>B</th><th>A<b< th=""><th>A=B</th></b<></th></b<>	A=B	A>B	A <b< th=""><th>A=B</th></b<>	A=B
A3 > B3	×	×	×	×	×	×	1	0	0
A3 < B3	×	×	×	×	×	×	0	1	0
A3 = B3	A2 > B2	×	×	×	×	×	1	0	0
A3 = B3	A2 < B2	×	×	×	×	×	0	1	0
A3 = B3	A2 = B2	A1>B1	×	×	×	×	1	0	0
A3 = B3	A2 = B2	A1 <b1< td=""><td>×</td><td>×</td><td>×</td><td>×</td><td>0</td><td>1</td><td>0</td></b1<>	×	×	×	×	0	1	0
A3 = B3	A2 = B2	A1=B1	A0 >B0	×	×	×	1	0	0
A3 = B3	A2 = B2	A1=B1	A0 <b0< td=""><td>×</td><td>×</td><td>×</td><td>. 0</td><td>1</td><td>0</td></b0<>	×	×	×	. 0	1	0
A3 = B3	A2 = B2	A1=B1	A0 =B0	1	0	0	1	0	0
A3 = B3	A2 = B2	A1=B1	A0 =B0	0	1	0	0	1	0
A3 = B3	A2 = B2	A1=B1	A0 =B0	0	0	· 1	0	0	1
A3 = B3	A2 = B2	A1=B1	A0 =B0	×	×	1	0	0	1
A3 = B3	A2 = B2	A1=B1	A0 =B0	1	. 1	0	0	0	0
A3 = B3	A2 = B2	A1=B1	A0 =B0	0	0	0	1	1	0

12. Commande par microcontrôleur Pic 16F876A

Dans le but de diminuer le temps mis par le mandrin en effectuant 12 tours dans le sens antihoraire, une carte électronique à base de PIC 16F876A (Fig. 13) est utilisée pour augmenter la vitesse du moteur Mt1. Ainsi, le temps mis par le trainard quand il avance de S_2 à S_3 coincide à celui mis par ce moteur.

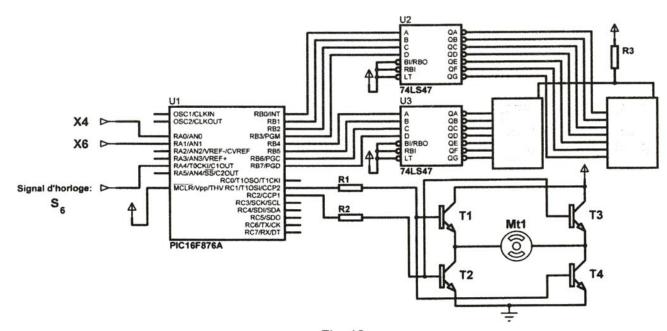
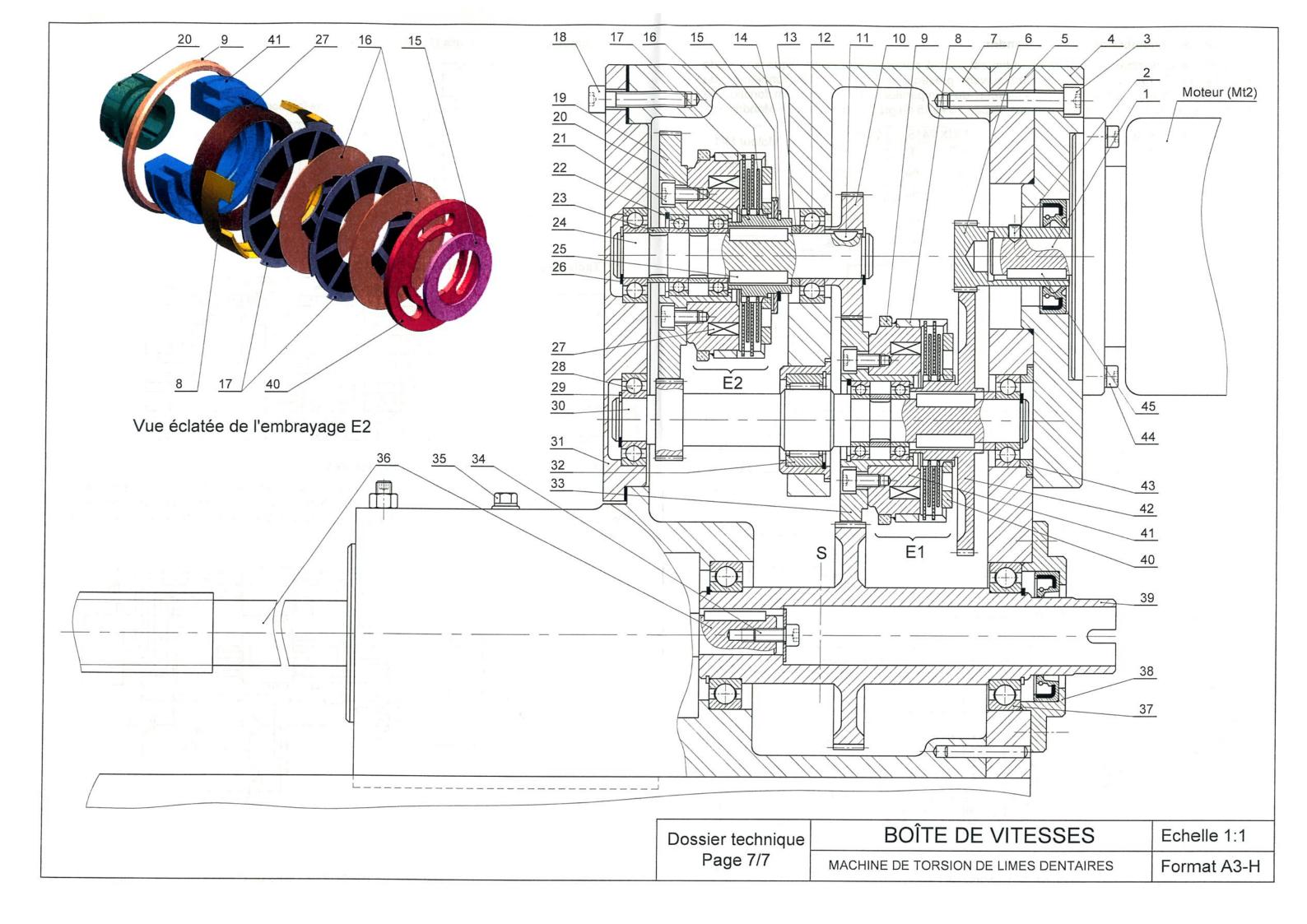
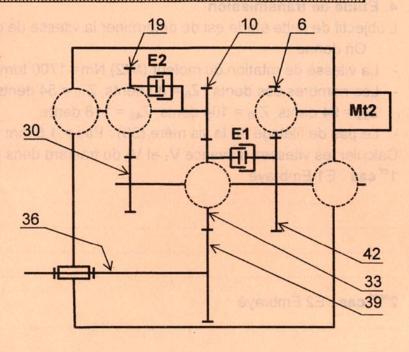



Fig. 13


		S	ection :		N° d'inscription :	Série : .		
		N	om et P	rénom:	rien écrire ici			Signatures des surveillants
		D	ate et li	eu de naissan	ce:			
_								
		7						
_			- oć	us méo	PAINT OF CHESTING PRISELINE			
				NIE MÉCA	ANIQUE			
			nction		omplétor la diagramma EAST	docorinti	f rola	tif à la fanction principale
				rainard.	ompléter le diagramme FAST	uescripti	i iciai	ui a la loriction principale
-51	P			cer le train	ard mervinos tup is	eletem	Co	mposants/processeurs
-	100	304	Debia	cer le trail	le choix	justifie	e nor	(Noms et repères)
		FT	1 1	Guider le tra	ainard		Rain	ure en Vé et Appui plan
		0	<u> </u>		205	_	rtain	ure en ve et Appur plan
	E	Т2	Anim	er le traina	rd en translation	7		
	4	-	1	J. J. Gama	9VI	OUTSAND		
	DIG	el Fi	JE 396	Transmett	re le mouvement de rotation	a marinar		
	ndi	5-7	FT21		(1) à la vis mère (36)	pb 680		
	100	S 0	u 36	BOURIET SI	T DA CICIA COMMENTE E OF	(7) 19 (N	0) 08	plaçant les roulements
			F	T211 Guide	er (30) en rotation			90181190
	\$ 1		(19)	. Binamelu	is montage de ces deux ro	dessin	ub e	De compléter à l'échel
			U _F		mettre le mouvement de rotation au pignon-arbré (30)		Jabe	oyant le reglage du leu s
				de (1)	au pignon-arbre (50)	indieni	al mo	and the factor and the factor and the
				Th.	C BE			
				FT2121	Transmettre le mouvement de			
					rotation de (30) à (39+36)		Eng	renage (33, 39)
			621	FT2122			Rou	lements (37)
			140					
							Eng	renage (30, 19)
				FT2123			Emb	prayage (E2)
							Link	mayage (LZ)
				FT2124	Guider (24) en rotation			
			72	12124	Caldon (21) on location			
			THE				_	40.00.00
				FT2125			Eng	renage (10, 33,39)
				177				
								Ama de m3-
			FT22				Syst	ème vis mère-écrou
		L				_		

2. Schéma cinématique

- 2.1. En se référant au dossier technique, compléter le schéma cinématique suivant par les symboles normalisés des liaisons.
- 2.2. Déterminer le sens de rotation de la vis mère (36) par rapport au sens de rotation du moteur (Mt2), en indiquant «même sens» ou «sens contraire» correspondant aux deux cas suivants :

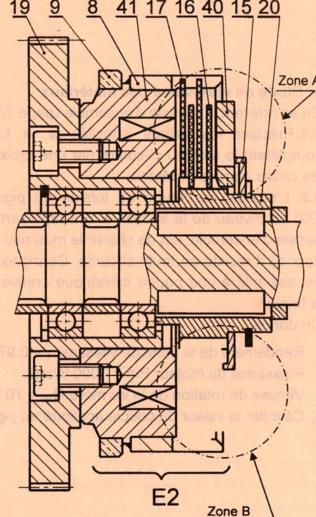
1^{er}cas :E1 Embrayé :

2èmecas :E2 Embrayé :

3. Etude de l'embrayage E2

3.1. Préciser le type de cet embrayage et sa commande.

3.2. La position débrayée de l'embrayage (E2) est représentée sur le dessin ci-contre dans la zone A. Compléter à la même échelle la position embrayée dans la zone B.


3.3. Calculer le couple transmissible par cet embrayage « Ct » sachant que l'effort presseur F = 1200N et le coefficient de frottement f = 0,3.

N.B.: - Relever les données nécessaires à partir du dessin ci-contre à l'échelle 3:2

- On donne : Ct =
$$\frac{2}{3} \cdot F \cdot n \cdot f \cdot \frac{R^3 - r^3}{R^2 - r^2}$$

(46) browns

Ct =

4. Etude de transmission

L'objectif de cette étude est de déterminer la vitesse de déplacement du trainard.

On donne:

- La vitesse de rotation du moteur (Mt2) Nm= 1700 tr/min.
- Les nombres des dents : $Z_6 = 30$ dents, $Z_{10} = 54$ dents, $Z_{19} = 113$ dents, $Z_{30} = 35$ dents, $Z_{33} = 94$ dents, $Z_{39} = 104$ dents, $Z_{42} = 118$ dents.
- Le pas de filetage de la vis mère (36) : Pas = 1,5 mm.

Calculer les vitesses d'avance V1 et V2 du trainard dans le deux cas suivants :

1er cas : E1 Embrayé

V₁=m/mir

2^{ème} cas : E2 Embrayé

V₂= m/min

E2 Embrayé

E1 Embrayé

Arbre

6

30

24

39

Ct.

5. Etude de résistance des matériaux

En se référant au dessin d'ensemble (page 7/7)

- **5.1.** Préciser les arbres sollicités à la torsion en complétant le tableau ci-contre par une croix (X) dans les cases correspondantes.
- 5.2. L'objectif de l'étude de torsion du pignon arbré (39) au niveau de la section « S » représentée sur le dessin d'ensemble, est de choisir le matériau convenable pour qu'il résiste en toute sécurité. Ce pignon-arbré (39) est assimilé à une poutre cylindrique creuse sollicitée à la torsion.

a torsion.			
On donne:			

- Rendement de la boite de vitesses $\eta = 0.97$
- Puissance du moteur Pm = 1000 Watts.
- Vitesse de rotation de la vis mère N₃₆ = 70 tr/min.
- a. Calculer la valeur du couple appliqué au pignon-arbré (39).

C₃₉

Dossier réponses

MACHINE DE TORSION DE LIMES DENTAIRES

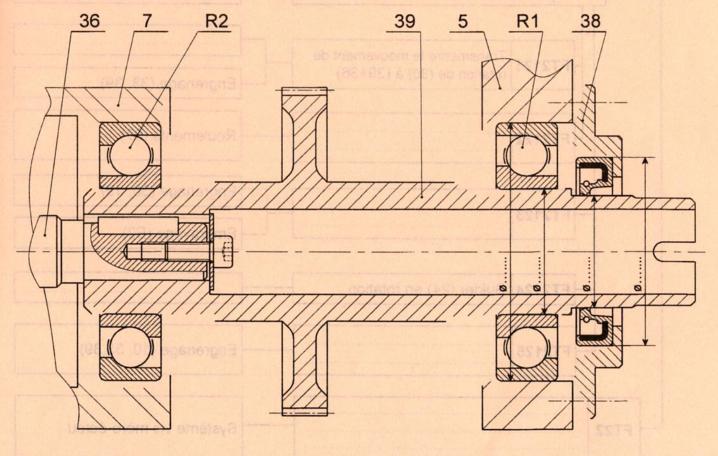
Page 3/8

b. Ca	lculer la	contrainte	tangentielle	maximale	τ_{maxi}
-------	-----------	------------	--------------	----------	----------------------

N.B.: Relever les données nécessaires à partir du dessin d'ensemble.

c. Choisir du tableau ci-contre le matériau qui convient pour la résistance de ce pignon et justifier le choix. Choix:

Justification:

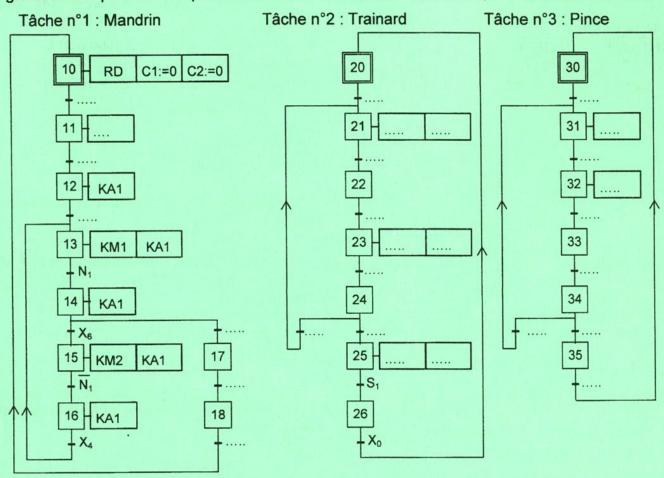

Matériau	Rpg (MPa)
S 185	25
S 275	29
E 295	32
C 25	45

6. Modification d'une solution constructive

L'opération de torsion des limes dentaires provoque des charges axiales importantes sur le pignonarbré (39), le constructeur propose de modifier le guidage en rotation de ce pignon-arbré en remplaçant les roulements BC (37) et (37') par deux roulements à une rangée de bille à contact oblique type BT (R1) et (R2).

On demande:

- 6.1. De compléter à l'échelle du dessin le montage de ces deux roulements (R1) et (R 2) en prévoyant le réglage du jeu axial.
- 6.2. D'indiquer les tolérances dimensionnelles permettant un bon fonctionnement du système.



Section:	
Nom et Prénom :	Signatures des surveillants
Date et lieu de naissance :	
×	

B. PARTIE GÉNIE ÉLECTRIQUE

1. Étude du GRAFCET

Se référer dans cette question aux pages 1, 2, 3 et 4 du dossier technique. Compléter, ci-dessous, les grafcets d'un point de vue partie commande des tâches « Mandrin », « Trainard » et « Pince ».

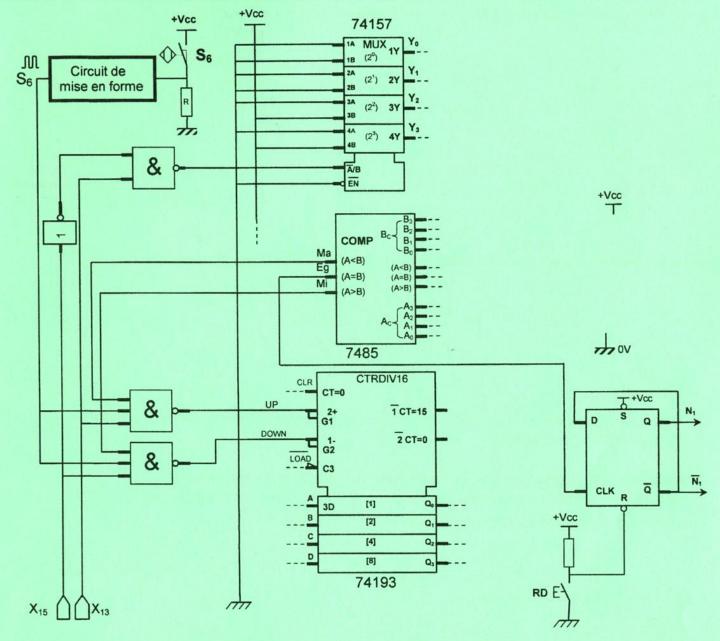
N.B : «RD» : forçage à zéro de la bascule D ;

«C1 : = 0» : mise à zéro du compteur C1 ;

«C2 : = 0» : mise à zéro du compteur C2.

2. Étude du circuit de comptage

Se référer, dans cette partie, aux pages 5 et 6 du dossier technique.


2.1. Déterminer les équations logiques des entrées UP et DOWN en fonction de X₁₃, X₁₅, S₆ et des sorties du comparateur binaire (Ma) et (Mi).

UP = ; DOWN =

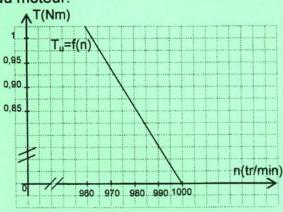
2.2. Compléter le tableau ci-dessous lorsque le circuit intégré 74193 fonctionne en mode comptage.

X13	X15	Ма	Mi	UP	DOWN

2.3. Compléter le schéma ci-dessous par les liaisons manquantes permettant d'assurer le fonctionnement demandé au dossier technique aux pages 5 et 6.

3. Etude du moteur d'entrainement du mandrin

Le mandrin est entraîné par le moteur Mt1 à courant continu à excitation indépendante. Se référer, dans cette partie, aux caractéristiques Tu = f(n) et I = f(n) données au dossier technique page 4.


3.1. Compléter le tableau ci-dessous.

	Vitesse à vide : n ₀	Couple utile à vide : T _{u0}	Courant à vide : I ₀
Valeur numérique avec unité			

Dossier réponses	MACHINE DE TORSION DE LIMES DENTAIRES	Page 6/8
------------------	---------------------------------------	----------

- 3.2. Pendant la torsion, la tige oppose au moteur un couple résistant constant $T_r = 0.9$ Nm.
- a. Tracer la caractéristique du couple résistant $T_r = f(n)$ sur le repère ci-dessous.
- b. En déduire les coordonnées du point de fonctionnement du moteur.

Couple utile (Nm)	Vitesse de rotation (tr/min)	Intensité du courant (A)
Tu =	n=	1=

- c. Déterminer les pertes par effet joule dans l'inducteur sachant que le rendement est de 75%.
- **d.** Le couple des pertes $T_p = 0.05$ Nm, tracer la caractéristique du couple électromagnétique $T_{\text{ém}} = f(n)$ sur le même repère.
- 4. Adaptation du signal délivré par le capteur de position du mandrin S₆

En se référant aux chronogrammes des tensions U₁ et U₂ (page 4 du dossier technique),

- 4.1.donner le régime de fonctionnement de l'A.L.I ? Justifier.
- 4.2. déduire la valeur de la tension U_{réf}.
- 4.3. compléter le tableau ci-dessous en indiquant la valeur de la tension U2.

U ₁	U ₁ < U _{réf}	U ₁ > U _{réf}
U ₂ (v)		

5. Etude de la commande du moteur Mt1 par le microcontrôleur 16F876A

Se référer, dans cette partie, à la page 6 du dossier technique et au grafcet de la tâche « Mandrin » du dossier réponses.

Compléter le programme en mikroPascal Pro par les instructions correspondantes à la séquence du grafcet de la tâche « Mandrin » composée par les étapes 13, 14, 15 et 16 à la page 5 du dossier réponses. Les broches non utilisées d'un port doivent être configurées en entrées.

Doss	ior	rán	and	200
DO22	161	IEP	OH	569

program mandrin;	// Entête du programme
var X4 : sbit atbit ; var X6 : sbit at bit ;	// X4 : variable de type bit connectée à RA0 // X6 : variable de type bit connectée à RA1
var i,j: byte;	// i, j : variables de type octet
var X13,X14,X15,X16 :;	// X13, X14, X15 et X16 : variables de type bit
Begin	// Début programme
·····;	// Configuration registres A et B en hexadécimal
OPTION_reg:=\$28;	// Configuration TMR0
ADCON1:=\$06; PORTB :=0;	// Port A numérique et initialisation port B
X16:=1; X13:=0; X14:=0; X15:=0;	// Initialisation des étapes 16, 13, 14 et 15
PWM1_Init(); PWM2_Init();	// initialisation PWM1 et PWM2 à 1000Hz
	// Tant que vraie faire
	// Début boucle
TMR0 :=0;	// Initialisation TMR0
; ;	// Activation de l'étape 13 et la désactivation de l'étape 16
while (TMR0 <=11) and do	// Tant que (TMR0≤11) et l'étape 13 active faire
- TMD0	// Début boucle
i:=TMR0;	// Mode compteur
PORTB:=Dec2Bcd(i); PWM1_start(); PWM1_set_duty;	// Conversion du décimal en BCD // Rotation Mt1 sens horaire , α=byte(128/255)
;	// Rotation Mrt sens notatile , \(\alpha\)-byte(126/233)
if (i=11) and	77 III boddle
11 (1-11) 2112	// Activation de l'étape 14, désactivation de
; ;	l'étape 13 et arrêt de rotation en sens horaire du
PWM1 stop(); PORTB:=Dec2Bcd(12);	moteur Mt1
end;	motour me.
Cita,	
	// Activation de l'étape 15 et la désactivation de
· · · · · · · · · · · · · · · · · · ·	l'étape 14
	Tetape 14
While (TMR0<=11) and do	// Tant que (TMR0≤11) et l'étape 15 active faire
	// Début boucle
j:=12-TMR0; PORTB:=Dec2Bcd(j);	// Mode décompteur
· · · · · · · · · · · · · · · · · · ·	// Rotation Mt1 sens anti-horaire avec α=1 // Fin boucle
·····;	// Fill boucle
if(j=1) and	// Activation de l'étape 16 et désactivation de
	l'étape 15, arrêt de rotation en sens anti-horaire
; PORTB:=0;	de Mt1 et initialisation port B
;	// Fin boucle
	// Fin programme
	1 ' '

Dossier réponses	ier réponses
------------------	--------------