MINISTERE DE L'EDUCATION MEN DU BACCALAUREAT **SESSION DE JUIN 2011**

SECTION: SCIENCES TECHNI

EPREUVE : TECHNOLOGIE

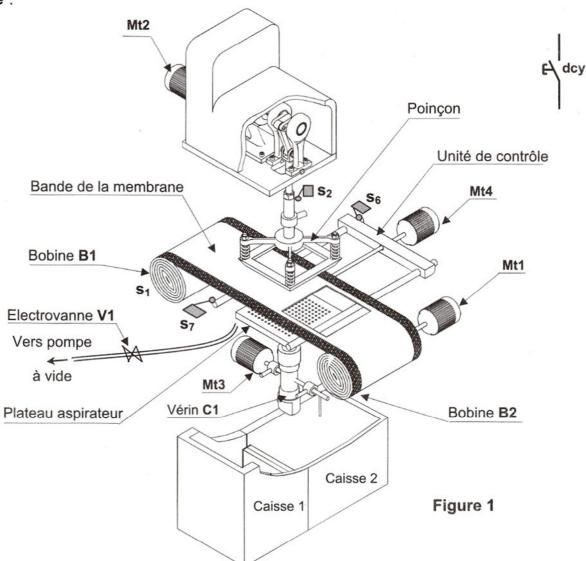
SESSION PRINCIPALE

Constitution du sujet :

Un dossier technique : Pages 1/6 - 2/6 - 3/6 - 4/6 - 5/6 et 6/6.

Des feuilles réponses : Pages 1/8 - 2/8 - 3/8 - 4/8 - 5/8 - 6/8 - 7/8 et 8/8

Travail demandé:


A- PARTIE GENIE MÉCANIQUE : pages 1/8-2/8-3/8 et 4/8. (10 points) B- PARTIE GENIE ÉLECTRIQUE : pages 5/8- 6/8-7/8 et 8/8 (10 points)

Observation : Aucune documentation n'est autorisée. L'utilisation de la calculatrice est permise.

UNITE DE PREPARATION DE MEMBRANES DE PILE A COMBUSTIBLE

1- Présentation du système

Le système à étudier (voir figure 1) est destiné à la préparation de membranes d'une pile à combustible*.

^{*}Une pile à combustible est un générateur électrochimique équipant les moteurs de certains véhicules électriques.

2- Description du système

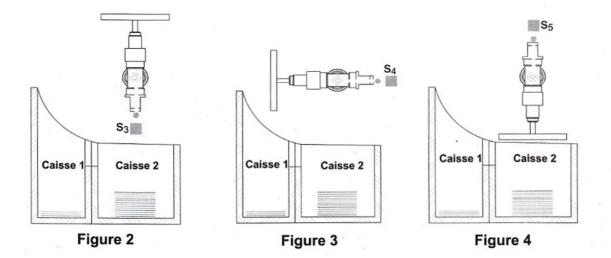
Ce système comporte essentiellement :

- une unité d'entraînement permettant l'avance de la bande de la membrane enroulée sur une bobine B1; cette unité est entraînée par un moteur Mt1.
- une unité de **découpage** assurant le découpage de la membrane à l'aide d'un **poinçon** entraîné par un moteur **Mt2**.
- une unité de contrôle permettant le contrôle des dimensions de la membrane.
- une unité de rangement permettant le rangement des bonnes membranes dans la caisse 2 et des mauvaises membranes dans la caisse 1.

3- Fonctionnement du système

Se référer au dossier technique page 1/6 et au tableau d'identification ci-dessous.

A l'état initial, les capteurs ℓ₁₀, s₁, s₂, s₃ et s₆ sont actionnés et les moteurs Mt3 et Mt4 sont à l'arrêt. Les moteurs Mt1 et Mt2 sont en rotation continue et ne feront pas l'objet de l'étude fonctionnelle.


Une action sur le bouton de mise en marche (dcy) engendre successivement les opérations suivantes :

- l'avance de la bande de la membrane durant 2s par accouplement du moteur Mt1 à la bobine B2 à l'aide d'un embrayage frein électromagnétique commandé par un relais électromagnétique KA1.
- la sortie de la tige du vérin C1 afin de soutenir la bande de la membrane à découper. L'action sur le capteur ℓ₁₁ entraîne à la fois :
 - la descente du poinçon pour découper la membrane et sa montée jusqu'à ce qu'il actionne de nouveau le capteur s₂; ces deux mouvements sont obtenus par accouplement du moteur Mt2 au mécanisme de découpage à l'aide d'un embrayage frein électromagnétique commandé par un relais électromagnétique KA2.
 - l'ouverture de l'électrovanne V1(commandée par le relais électromagnétique KA) permettant de maintenir la membrane à l'aide de la dépression générée par la pompe à vide.
- la rentrée de la tige du vérin C1 jusqu'à l'action sur le capteur ℓ₁₀.
- l'avance puis le recul de l'unité de contrôle entraînée par une vis solidaire de l'arbre du moteur **Mt4** permettant ainsi de contrôler les dimensions de la membrane et de délivrer une information logique **X** telle que :
 - si X = 1, les dimensions de la membrane sont bonnes; ce qui provoque la rotation de 180° du plateau aspirateur entraîné par le moteur Mt3 dans le sens avant jusqu'à l'action sur le capteur s₅ (voir figure 4 du dossier technique page 3/6). L'électrovanne V1 se ferme et libère la membrane qui tombe dans la caisse 2.
 - si X = 0, les dimensions de la membrane sont mauvaises; ce qui provoque la rotation de 90° du moteur Mt3 dans le sens avant jusqu'à l'action sur le capteur s₄ (voir figure 3 du dossier technique page3/6). L'électrovanne V1 se ferme et libère la membrane qui tombe dans la caisse 1.
- la rotation du moteur Mt3 dans le sens arrière jusqu'à l'action sur le capteur s3 et le cycle recommence.

Tableau d'identification

Actions	Actionneurs	Préactionneurs	Capteurs
		Présence bobine	S ₁
Découpage de la bande	Moteur asynchrone triphasé Mt2 + électroaimant K2	Relais électromagnétique KA2	S ₂
Contrôle	Moteur à courant continu Mt4	Contacteur KM41 (sens avant)	S ₇
de la bande	Moteur a courant continu wit-	Contacteur KM42 (sens arrière)	S ₆
Maintien	Vérin hydraulique à double effet	Distributeur 4/5/2 14M1 (sortie)	€11
de la bande	C1	Distributeur 4/5/2 12M1 (rentrée)	€10
Rangement	Moteur à courant continu Mt3	Contacteur KM31 (sens avant)	S ₄ , S ₅
de la membrane	Motedi a codiant continu wits	Contacteur KM32 (sens arrière)	S ₃
Avance de la bande	Moteur asynchrone triphasé Mt1 + électroaimant K1	Relais électromagnétique KA1	
Maintien de la membrane	Electrovanne V1 + plateau aspirateur	Relais électromagnétique KA	

Dossier technique	UNITE DE PREPARATION DE MEMBRANES DE PILE A COMBUSTIBLE	Page 2/ 6
-------------------	--	-----------

4- Tableaux d'affectation

Entrées du système	Entrées de l'A.P.I (TSX)	Entrées de l'A.P.I (AEG)	
dcy	%I1.0	I15	
S ₁	%I1.1	I1	
S ₂	%I1.2	I2	
S ₃	%I1.3	I3	
S ₄	%I1.4	I4	
S ₅	%I1.5	15	
S ₆	%I1.6	16	
S ₇	%I1.7	I7	
ℓ ₁₀	%I1.8	18	
ℓ ₁₁	%I1.9	19	
X	%I1.10	I10	

Sorties de	Entrées de l'A.P.I (AEG)	
%Q2.0	Q1	
%Q2.1	Q2	
%Q2.2	Q3	
%Q2.3	Q4	
%Q2.4	Q5	
%Q2.5	Q6	
%Q4.0	Q7	
%Q4.1	Q8	
%Q4.2	Q9	
%TM1	T1	
	"A.P.I (TSX) %Q2.0 %Q2.1 %Q2.2 %Q2.3 %Q2.4 %Q2.5 %Q4.0 %Q4.1 %Q4.2	

c- Affectation des étapes GRAFCET :

Etapes	0	1	2	3	4	5	6	7	. 8	9
API TSX	%M0	%M1	%M2	%M3	%M4	%M5	%M6	%M7	%M8	%М9
API AEG	M128	M1	M2	МЗ	M4	M5	М6	M7	М8	М9

5- Schéma fonctionnel de l'asservissement de position du moteur Mt3

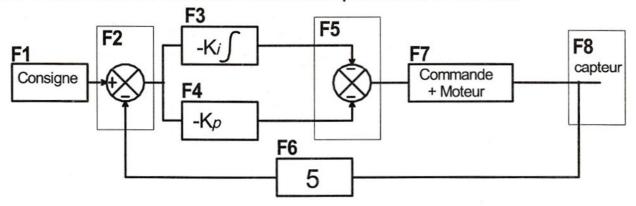
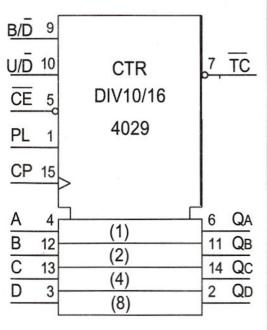
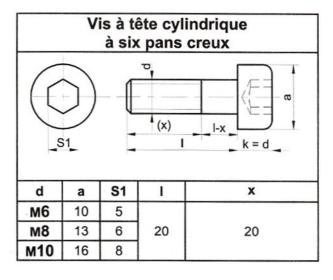



Figure 5

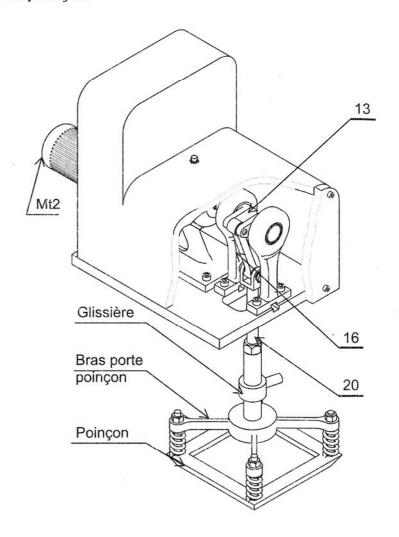
Dossier technique UNITE DE PREPARATION DE MEMBRANES DE PILE A COMBUSTIBLE	Page 3/ 6
---	-----------


6- Données technologiques

Compteur/Décompteur synchrone décimal/binaire «CD 4029 »

Désignation	Description
СР	Entrée d'horloge activée au front montant
CE	Entrée de validation activée au niveau bas
PL	Entrée de chargement parallèle asynchrone activée au niveau haut
A, B, C, D	Entrée des données parallèles
QA, QB, QC, QD	Sorties
тс	Sortie de report ou de retenue
U/D	1Logique : Compteur 0Logique : Décompteur
B/D	1Logique : Compteur /Décompteur binaire 0Logique : Compteur/Décompteur décimal

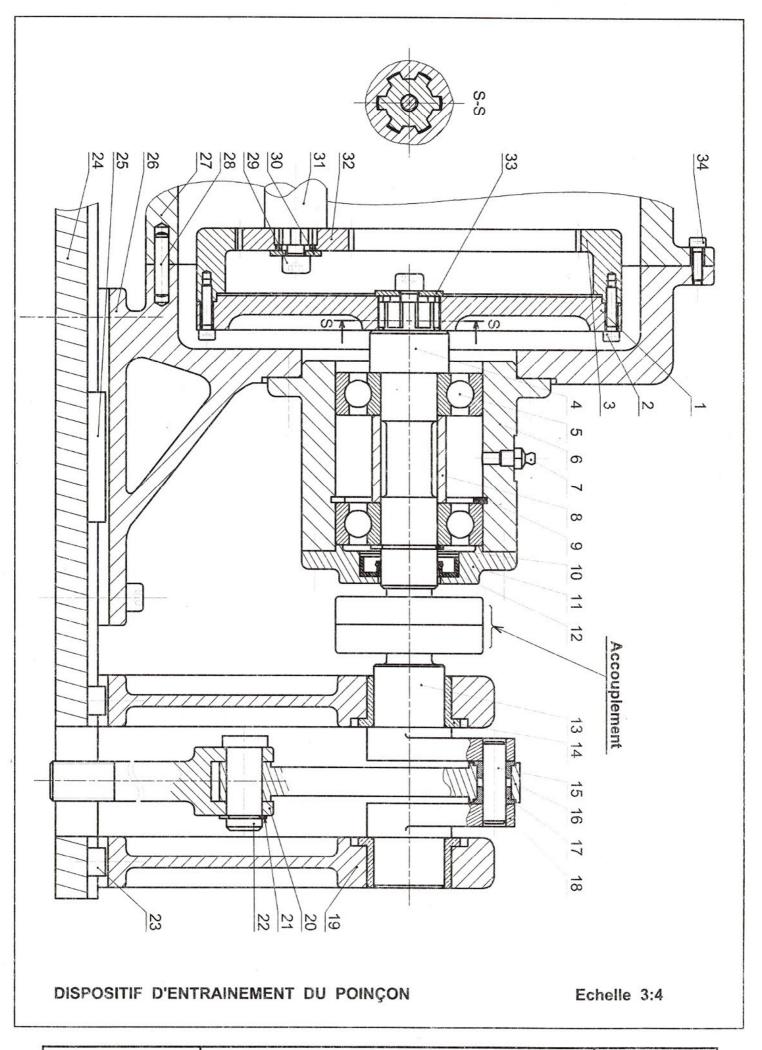
7- Composant normalisé


8- Description du dispositif d'entraînement du poinçon

Le dessin d'ensemble de la page 6/6 du dossier technique et la vue en 3D ci contre, représentent le dispositif d'entraînement du poinçon.

La rotation de l'arbre (31) du moteur Mt2 est transmise à la manivelle (13) par l'intermédiaire :

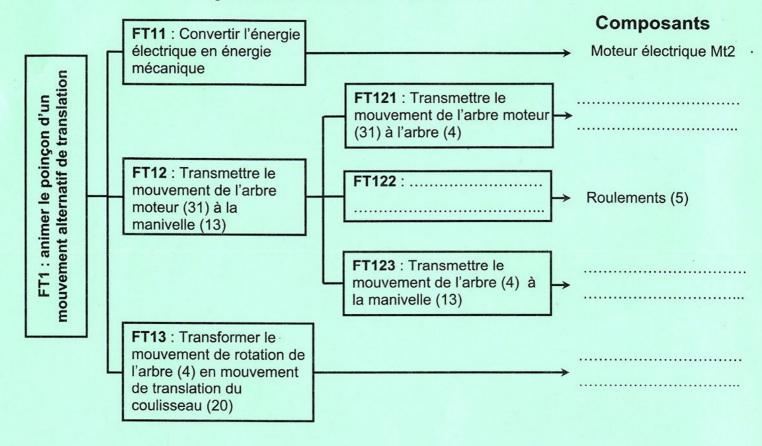
- d'un engrenage cylindrique formé par le pignon (32) et la couronne (3);
- d'un accouplement.


La rotation continue de la manivelle (13) et (18) provoque la translation du coulisseau (20); du bras porte poinçon et du poinçon, à l'aide de la bielle (16).

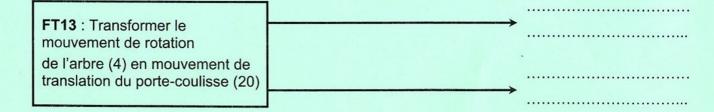
9- Nomenclature

Rp	Nb	Désignation DISPOSITIF D'ENTRAINEME		Nb	
1	1	Porte - couronne	18	1	Manivelle droite
2	4	Vis à tête cylindrique à six pans creux, M4x16	19	2	Palier
3	1	Couronne	20	1	coulisseau
4	1	Arbre	21	1	Anneau élastique pour arbre
5	2	Roulement à une rangée de billes à contact radial	22	1	Axe
6	1	Boîtier	23	2	Lardon
7	1	Graisseur	24	1	Semelle
8	1	Bague	25	1	Clavette parallèle, forme A, 6x6x45
9	1	Anneau élastique pour alésage	26	1	Demi-carter gauche
10	1	Anneau élastique pour arbre	27	1	Demi-carter droit
11	1	Couvercle	28	2	Pied de centrage
12	1	Joint à lèvre	29	1	Vis à tête cylindrique à six pans creux M6x10
13	1	Manivelle gauche	30	1	Rondelle spéciale
14	2	Coussinet à collerette frittée	31	1	Arbre moteur
15	1	Axe	32	1	Pignon
16	1	Bielle	33	1	Rondelle spéciale
17	2	Coussinet à collerette frittée	34	3	Vis à tête cylindrique à six pans creux M5x12

Dossier technique	UNITE DE PREPARATION DE MEMBRANES DE PILE A COMBUSTIBLE	Page 5/ 6
-------------------	--	-----------



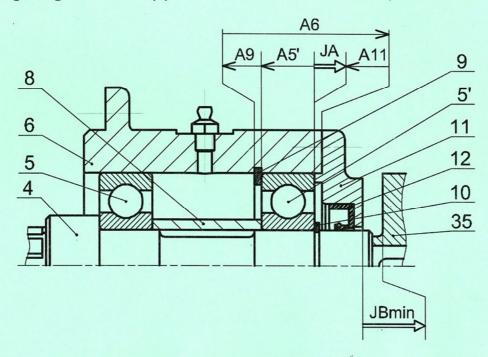
A- PARTIE GENIE MÉCANIQUE


1- Etude du poinçon

En se référant au dessin d'ensemble du dispositif d'entraînement du poinçon et à sa nomenclature (voir dossier technique pages 5/6 et 6/6),

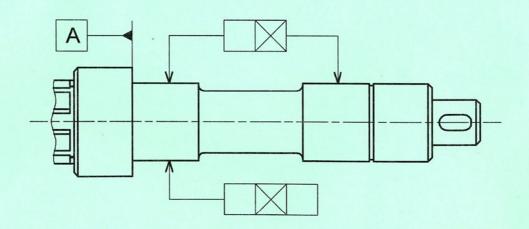
1-1 compléter le diagramme F.A.S.T relatif à la fonction FT1.

1-2 proposer deux autres solutions assurant la fonction FT13



1-3 pour l'assemblage de l'arbre (4) avec le porte couronne (1), compléter le tableau suivant :

	Mise en position	Maintien en position
Assemblage		
(4) - (1)		


Feuille réponses	UNITE DE PREPARATION DE MEMBRANES	Page 1/8
reune reponses	DE PILE A COMBUSTIBLE	Page 1/8

2- Etude du guidage de l'arbre (4)

2-1 Ecrire les équations limites de la condition JA.

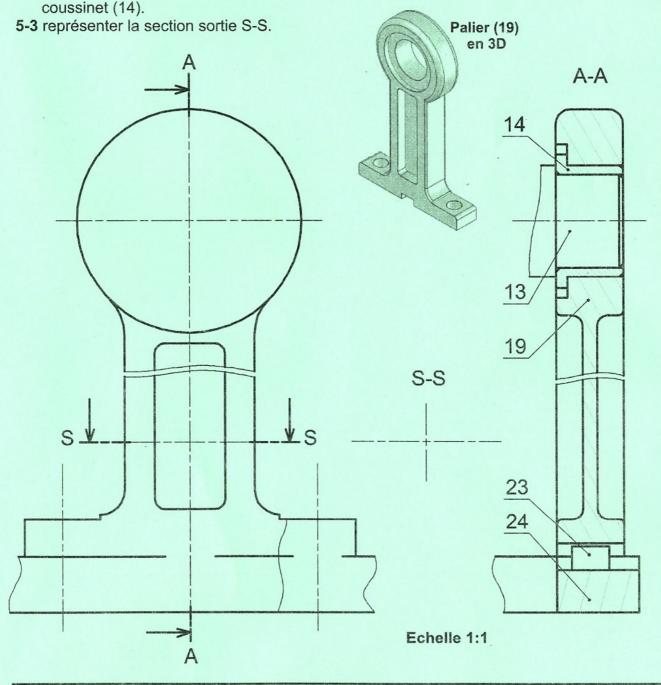
- 2-2 Tracer la chaîne de cotes installant la condition JBmin .
- 2-3 Sur le dessin ci-dessous de l'arbre (4) :
 - a- reporter la cote fonctionnelle déduite de la chaîne de cotes JB_{min}.
 - b- indiquer les tolérances de position des portées des roulements.

4- Etude du mouvement du poinçon

Le cahier des charges impose une vitesse maximale du choc entre le poinçon et le plateau, $Vch_{max} = 1,2 m/s$.

On se propose de vérifier si la transmission utilisée pour l'entraînement du poinçon répond à cette condition avec les données suivantes :

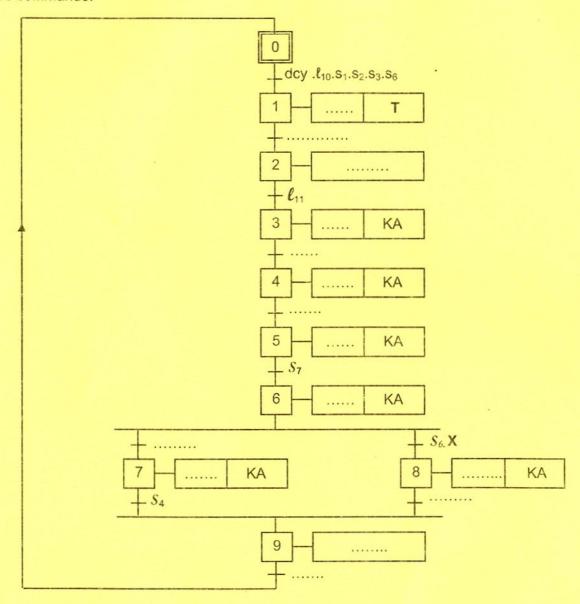
- vitesse de rotation de l'arbre moteur (31): N₃₁ = 1500 tr/mi
- nombre de dents du pignon (32): Z₃₂ = 40 dents.
- nombre de dents de la couronne (3) : Z₃ =120 dents.
- rayon de la manivelle (13): R₁₃ = 30 mm.


4-1 Calculer la vitesse de rotation N ₄ de l'arbre (4).	
	N ₄ =
4-2 Calculer la vitesse linéaire au point A de la manivelle (13) : IIV(A,13/0)II en m/s (Voir figure ci-contre).	0 13
	O A
4-3 Représenter à l'échelle, sur le schéma ci-contre, la vitesse linéaire de la manivelle (13) au point A IV(A,13/0) sachant que IV(A,13/0) = 1,6 m/s	16
4-4 Déterminer à l'échelle sur le schéma ci-contre, la vitesse du point B du porte-coulisse (20) IIV(B,20/0)II en utilisant la méthode de l'équiprojectivité des vitesses.	⊕B
	20
4-5 Déduire la vitesse du choc du poinçon IIVchII,	
4-6 Vérifier si cette vitesse répond à la condition du cahier des charges. Justifier.	Echelle : 0,1m/s -> 2mm
	Position de choc
Feuille réponses UNITE DE PREPARATION DE MEMBI	RANES Page 3/8

DE PILE A COMBUSTIBLE

5- Etude de l'assemblage du palier (19)

On donne à l'échelle 1:1 le dessin d'ensemble partiel défini par la vue de face en coupe A-A et la vue de droite incomplète.


- 5-1 compléter sur la vue de droite :
 - 5-1-1 la représentation de l'assemblage du palier (19) avec la semelle (24) en assurant :
 - le positionnement du palier par un lardon (23) de largeur 8 mm.
 - la fixation du palier sur la semelle par deux vis à tête cylindrique à six pans creux dont les dimensions seront choisies à partir de la page 4/6 du dossier technique.
 - 5-1-2 la représentation de la manivelle (13) et le coussinet (14) sur la vue de droite.
- 5-2 indiquer, sur la vue de face en coupe A-A, les ajustements relatifs au montage du

B-PARTIE GENIE ELECTRIQUE

I- Etude de la commande du système :

1- En se référant au dossier technique (pages 1/6 et 2/6), compléter le GRAFCET d'un point de vue de la partie commande.

2- Déterminer les équations d'activation A et de désactivation D des étapes 6, 8 et 9.

Etapes	Activation	Désactivation
6	A ₆ =	D ₆ =
8	A ₈ =	D ₈ =
9	A ₉ =	D ₉ =

	UNITE DE PREPARATION DE MEMBRANES	
Feuille réponses	DE PILE A COMBUSTIBLE	Page 5/8
	DE LILE A COMBOOTIBLE	

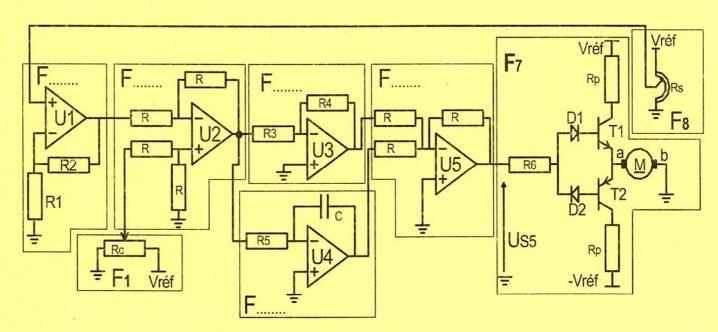
3- En se référant au GRAFCET précédent et aux tableaux d'affectation, page 3/6 du dossier technique, compléter **au choix** (TSX **ou** AEG) la liste des instructions relatives aux étapes 6, 8, 9 et à la sortie KA .

Automate TSX			Automate AEG				
	Etape 6 (%M6)		Etape 9 (%M9)		Etape 6 (M6)	ate ALG	Etape 9 (M9)
	Etape 8 (%M8)		Sortie KA		Etape 8 (M8)		Sortie KA

II- Etude du moteur Mt2 :

La plaque signalétique du moteur asynchrone **Mt2** est donnée par la figure ci-contre.

1- Le moteur est alimenté par un réseau triphasé 230/400 V, comment doit-on coupler ses enroulements pour qu'il fonctionne normalement ?
2- Quel est le nombre de pôles du stator ?


Mot. 3 ~ LS 80 L T							
-	٧	Hz	min ⁻¹	kW	cos φ	A	
-	D 220	50	1 390	0,75	0,86	3,3	***
0	Y 380	1				1,9	0
	D 230	50	1 400	0.75	0,83	3,3	
_	Y 400					1,9	4-18
D 0165	D 240	50	1 415	0,75	0,80	3,3	EC 34-1(87)
G	Y 415	**				1,9	2800
	Moteurs Leroy-Somer						

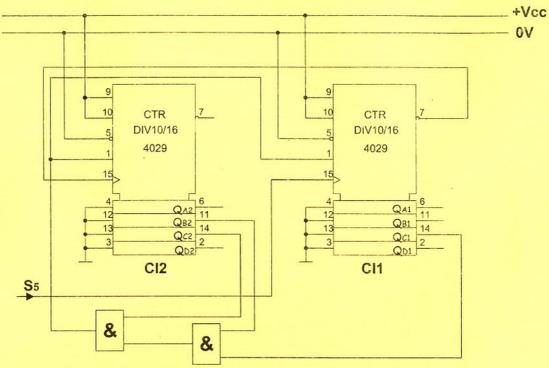
processing the contract of the		THE RESERVE AND ADDRESS OF THE PARTY OF THE
Feuille réponses	UNITE DE PREPARATION DE MEMBRANES DE PILE A COMBUSTIBLE	Page 6/8

3- En	a- calculer le glissement (en %).
	b- calculer sa puissance absorbée
	c – déterminer son rendement.

III- Etude de l'asservissement de position du moteur Mt3

1-En se référant au schéma fonctionnel de l'asservissement à la page 3/6 du dossier technique, repérer en indiquant sur le schéma structurel ci-dessous les indices des différents blocs fonctionnels

2- Sachant qu'un transistor bloqué (I_B =0) se comporte comme un interrupteur ouvert et qu'un transistor saturé (I_B = I_{Bsat}) se comporte comme un interrupteur fermé. Compléter le tableau suivant selon les différentes valeurs de U_{S5} en précisant les états des transistors T1 et T2 (saturé ou bloqué), des diodes D1 et D2 (bloquée ou passante) et le sens du courant dans le moteur Mt3 (de a vers b , de b vers a ou nul).


	T1	T2	D1	D2	Sens du courant
U _{S5} >0					
U _{S5} =0					
U _{S5} < 0					

Feuille réponses	UNITE DE PREPARATION DE MEMBRANES	Page 7/8
reunie reponses	DE PILE A COMBUSTIBLE	rage 770

IV- Etude du système de comptage :

Les pièces bonnes sont rangées dans la caisse N° 2 de capacité limitée. Un circuit de comptage à base de circuits intégrés 4029 incrémenté par le capteur \$5, permet de compter le nombre de ces pièces en vue de leur emballage. Lorsque ce nombre désiré est atteint, un avertisseur sonore retentit pour avertir l'opérateur et remettre automatiquement le compteur à zéro.

La figure ci-dessous représente le schéma de câblage de ce compteur.

En se référant au document constructeur du compteur **4029** (Dossier technique page 4/6) et au schéma de câblage du compteur ci-dessus :

1- écrire l'équation logique de PL :

2- compléter le tableau suivant relatif à l'état d'activation de PL :

		12	ak din dalam da dalam
QD2	QC2	QB2	QA2

QUI QUI QUI QA	OD4	001	OR1	OA1
	QD I	0(01	QDI	GOAT

3- déduire le modulo de ce compteur matérialisant la capacité de la caisse N°2 :

Modulo

Feuille réponses	UNITE DE PREPARATION DE MEMBRANES DE PILE A COMBUSTIBLE	Page 8/8
	DE PILE A COMBUSTIBLE	